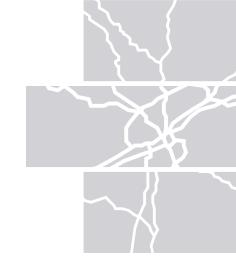
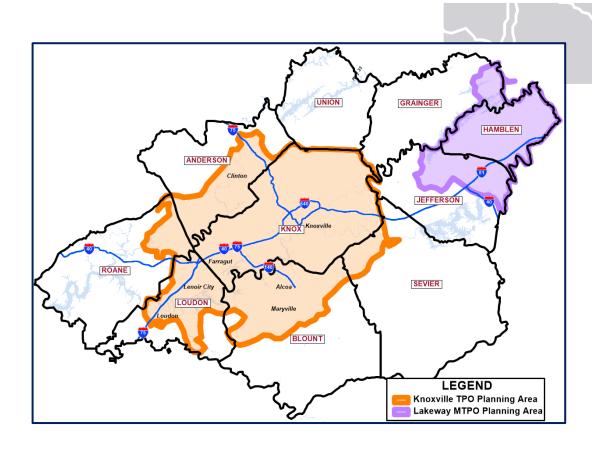

Item 5

TPO Travel Demand Model Update Scoping Overview



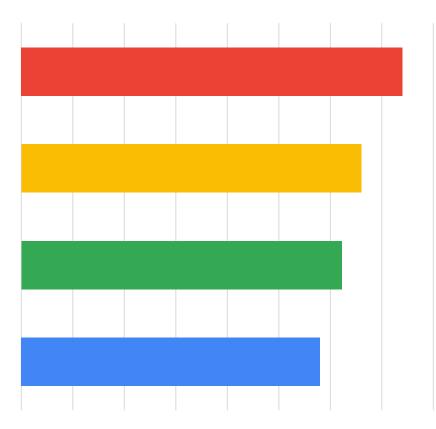
Agenda


- 1. INTRODUCTION
- 2. REVIEW OF STAKEHOLDER SURVEY
- 3. OVERVIEW OF WORKSHOP

KRTM Overview & Purpose of Workshop

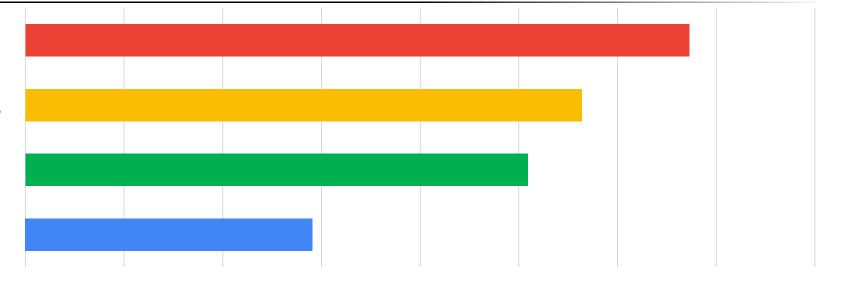
- Knoxville TPO Maintains a 10-County Regional Travel Demand Forecasting Model that includes all areas subject to Air Quality Conformity
 - Includes both the Knoxville TPO and Lakeway MTPO Planning Areas
- Current model validated to 2022 Base Year but based on platform originally developed in 2009/2010 – reaching end of life
 - Expectation for Mid and Large MPOs to Conduct Major Household Survey and Model Update every 10 years or so to capture changing travel behavior
- 2022 Model Update Contract with Caliper included Visioning/Scoping Exercise to lay groundwork for next major update

STAKEHOLDER SURVEY **Caliper**® hlalalalalalalal

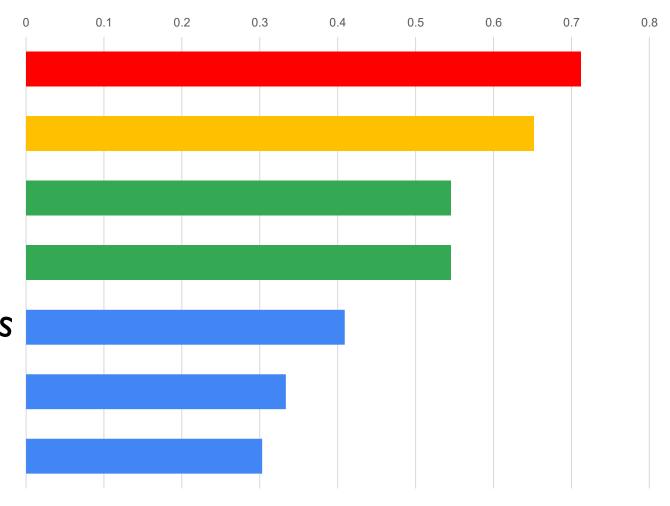

RESPONDENTS

- 12 responses
- Most had not used the model
- But I/3 claimed a technical background

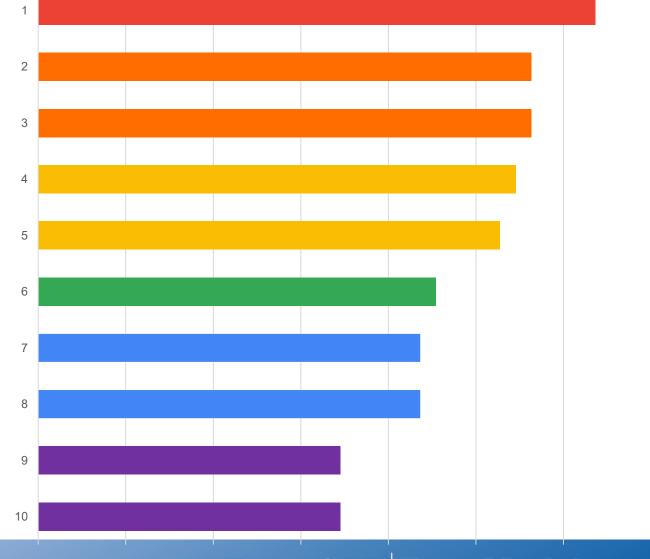
IMPORTANCE IN PRIORITIZING NEEDS


- Technical analysis (quantifying objective, measurable factors, e.g., minutes of delay, vehicle-miles-of-travel)
 - All respondents thought it was very or fairly important
- 2. Voter / taxpayer direct input
- 3. Principles / values (e.g., sustainability, economic benefits, equity, etc.)
- 4. Elected officials' priorities

MODELING FOR SPECIAL STUDIES


- Subarea Plans
- 2. Transit Studies
- 3. Bike/Ped Plans
- 4. Toll Studies

IMPORTANCE OF NEW/OTHER MODEL ANALYSES


- I. Traffic Impacts
- 2. Land Use Scenarios
- 3. Accessibility
- 4. Benefit-Cost
- 5. Modal Investment Strategies
- 6. Technology/Trends
- 7. Equity Analysis

IMPORTANCE OF EXPLICITLY MODELING

- I. Intersection Turn Lanes
- 2. Mulituse Paths
- 3. Sidewalks
- 4. Roundabouts
- 5. Amazon, Spark, etc.
- 6. Park & Ride / Carpooling
- 7. Bike Lanes
- 8. Food Delivery
- 9. Ridehailing
- 10. Autonomous Vehicles

OTHER RESPONSES

- Rated need for latest science and technology (AI) very high
- Rated need to report benefits/impacts by detailed demographics only moderate
- All agreed that a short (<4 hr) runtime should be the goal</p>

TAKE AWAYS

- All agree that technical analysis is important
 - Most thought further investment in technical analysis could benefit planning for the region
- Important additional analyses identified
 - Subarea plans
 - Traffic impacts
 - Land use scenarios
 - Intersection operations
 - Bike / pedestrian planning
- Model users want short run times and more spatial resolution

OVERVIEW OF WORKSHOP

WORKSHOP AGENDA

- Crash Course in the History of Travel Modeling & the KRTM
- Spectrum of Model Designs
- Model Uses
- Key Model Design Decisions
- Data
- Costing Options

THE EARLY YEARS

■ 1950's — The First Models

 Detroit, Chicago, etc., developed models to design Interstate highways in and through their regions

■ 1960's — Transit

 San Francisco adds a mode choice step and forecasts ridership for the new BART trains

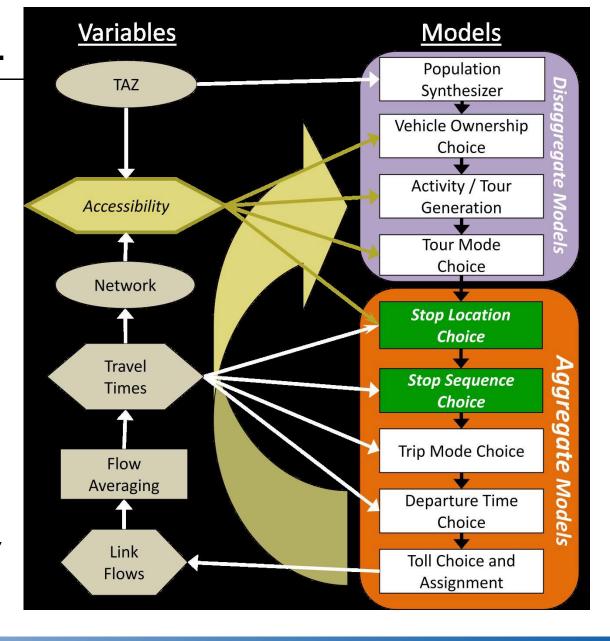
1970's – Federal Standardization

- FHWA develops and provides a standard urban model (for mainframes)
- The standard model becomes known as the "Four Step Model"
- Feds also standardize benefit-cost methodology
- Academics recognize issues with Four Step Model and theorize Activity-Based

THE FOUR STEP MODEL

Trip Generation – How many trips do people make?

Trip Distribution – Where do they go?


Mode Choice – Do they drive / ride the bus, etc.?

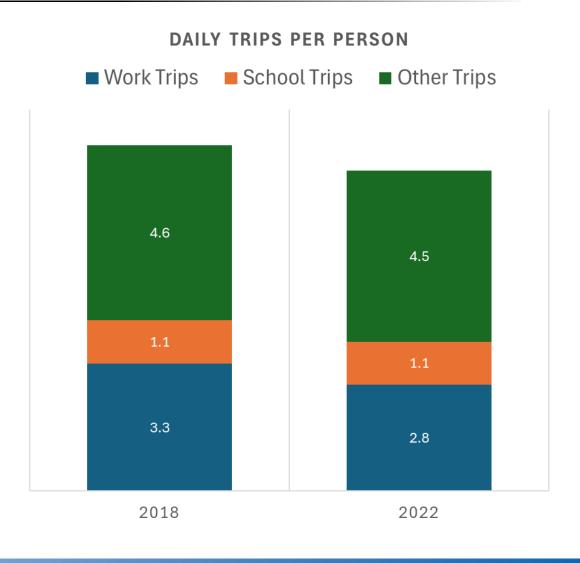
Traffic/Transit Assignment – What roads/routes do they use?

THE KRTM HYBRID MODEL

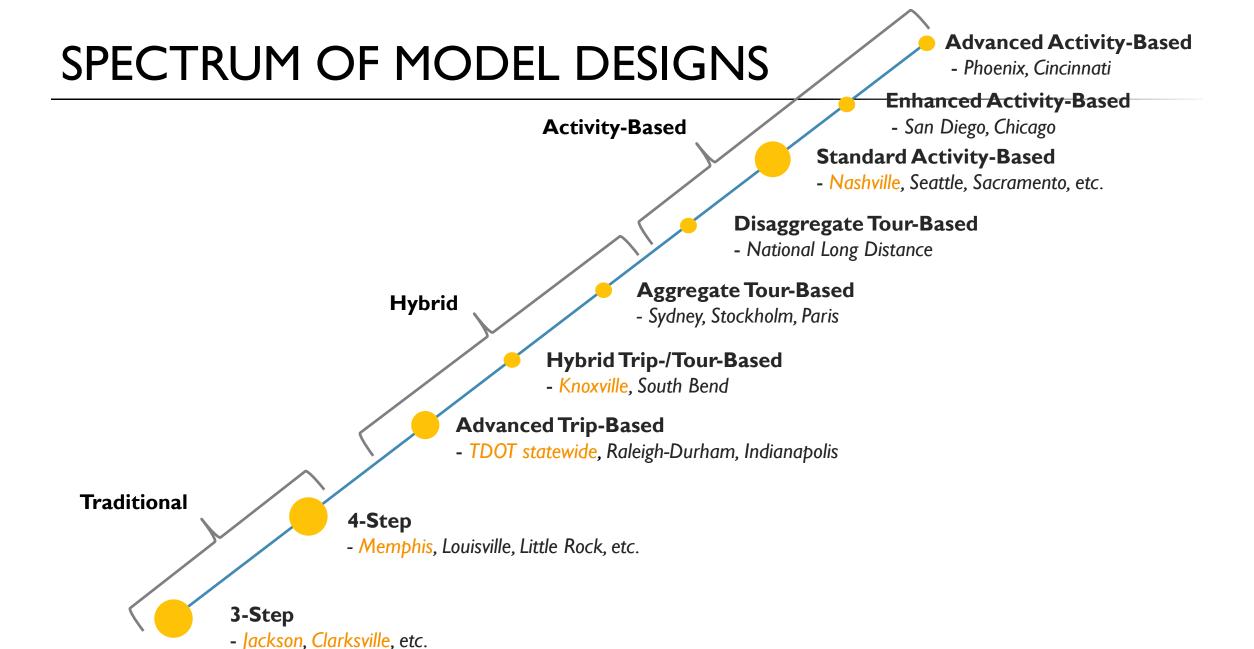
- Developed in 2009 from household survey data from 2000 & 2008 (2006 base year)
- More accurate than preceding four-step model
- Transit and walk/bike modes
 - Sensitive to walkability
- More realistic representation of special populations (seniors, low income, students)

ADVANTAGES OF HYBRID OVER TRADITIONAL

- Guarantee of physically possible travel patterns
- Sensitivity to gas prices, parking costs and tolls
- Transit, bicycle and pedestrian travel
- Sensitivity to urban design / built environment
- More realistic representation of seniors, the poor...
- More accurate commuting patterns, traffic impacts and travel times
- Ability to predict shifts in the timing of travel
- Improved truck models


HISTORY OF THE HYBRID KRTM

- 2009 Base year 2006 Model developed
- 2012 Base year 2010 Model expanded to cover LAMTPO
- 2020 Base year 2018 Update base & forecast years
- 2024 Base year 2022 Update base & forecast years
 - New module for remote work-from-home
 - Recalibration to post-COVID travel patterns



2024 MINOR UPDATE - DECREASED TRIP-MAKING

- Traffic counts (corroborated by surveys from other regions) revealed that trip-making in region in 2022 had fallen to 8.4 trips per day vs. 9.1 trips per day in 2018
 - 16.4% decrease in work trips
 - 7.5% overall decrease versus 2018
- Mostly work from home

KEY MODEL DESIGN DECISIONS

- Framework
 - Hybrid
 - ABM
- Temporal & Operational Resolution
 - Turning lane configurations?
 - Signal timings?
 - DTA?
- Post-Processing Tools
 - Air Quality
 - Accessibility
 - Benefit-Cost

- Coverage
 - Lakeway?
 - Pigeon Forge/Gatlinburg?
- Spatial Resolution
 - Number of Zones
 - All-Streets & Microzones?
- Delivery Truck Modeling?
- Technology
 - Use of new AI methods?

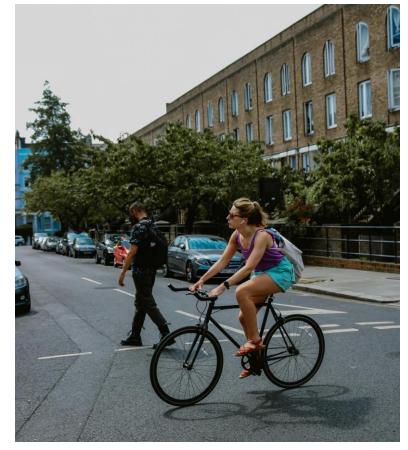
OPERATIONAL MODELING & DTA

Current model only knows intersection control type

(i.e., signal vs. stop sign vs. roundabout)

Additional information can be incorporated

- Turn lane configurations
- Signal timings
- Turn bay lengths
- 2D and 3D Animation



WALK & BIKE MODELING

 Current model only predicts total walk & bike trips produced by residents of each zone

 Some MPOs are attempting to model bicycle and pedestrian improvements like bike lanes & multiuse paths, but this requires investments in both data and modeling

INVESTMENT CHOICES AND USE CASES

	Import	Framework		Technology	Spatial Resolution		Temporal Resolution			Post-Processing Tools		
		Hybrid	ABM	Al	# of Zones	Microzones	Turn Lanes	Timings	DTA	Air Quality	Accessibility	Benefit-Cost
Core / Required Uses												
Air Quality Conformity	10	***	***	+	+		+	+		+++		
Deficiency Analysis for MTP	10	***	***	++	+		+	++			+	
Project / Design Forecasts	10	***	**	+++	+		+	+	+++			
Special Studies												
Subarea Studies	8.1	**	**	+++	+++		++	+	++			
Transit Studies	6.9	**	**	+	+	+						+
Bike / Ped Plans	6.7	**	**	++	+	+++	+	+				+
Toll Studies	3.3	**	***	++	+		+	+	+++			+
New / Alternative Uses												
Traffic Impacts	7.6	**	*	+++	++		+++	++	+++			
Land Use Scenarios	7.0	***	***	++	+		+			+		
Accessibility	4.6	***	***	+++	++		+	+			+++	
Benefit-Cost	4.6	***	***	++	+		+	+		+	++	+++
Modal Investment Strategy	3.9	***	***	++	+	+++	+	+		+	++	++
Technology / Trends	3.7	**	***	+					++	+		
Equity Analysis	3.5	**	***	+	+	+			+		++	++
Data Needs				모모	모모		모모			밀밀	모	
Data Costs		\$\$\$	\$\$\$\$	\$								
Development Costs		\$\$\$	\$\$\$\$	\$	\$	\$\$	\$\$	\$\$\$	\$\$\$	\$	\$\$	\$\$\$
Runtime		Ø	000		+			+	++	+	+	++

Summary & Next Steps

- Model Visioning/Scoping Final Report:
 - Summarize workshop findings
 - Analysis of pros and cons for various model update approaches
 - Identify Data Needs and Costs
- New Regional Household Travel Survey Underway – My Travels Count
 - Complete by end of 2025, Will Provide Primary Data to Develop new Model
 - 3,000 sample Target in KRTM Area roughly 1,000 collected in Spring, will resume in Fall
- Plan to Release Model Update RFP following completion of Household Survey with Refined Scoping and Final Budget once Modeling Consultant Retained

CONTACTS

Vince Bernardin, PhD | Vice-President vince@caliper.com | +1 812-459-3500

